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The three-dimensional dynamic traction vector of a vibrating structure is obtained with
the aid of the so-called hybrid strain analysis. Hybrid strain analysis is a method where
vibration response measured at a limited number of points and numerically approximated
continuous Hilbert space basis functions combined with spatial di!erentiation yields the
frequency-dependent strain tensor "eld in a vibrating structure.

Here, an extension and special application of hybrid strain analysis is proposed. In
a special case with a built-up structure with unknown dynamic properties in the interfaces
between the parts, the frequency- and spatial-dependent stress tensors, and thus also the
traction vector, are obtained for the structural parts using the proposed technique.

The method is validated using numerical simulation of measured vibration responses,
with very good agreement between the calculated and the true traction vector. The
calculated traction vector is shown to converge towards the true traction vector in an
arbitrary small area on the boundary of the structure.

The method is demonstrated for isotropic elastic material properties. This is, however, no
limitation for the method; it can be also applied to a structure with anelastic material
properties.

( 2002 Academic Press
1. INTRODUCTION

In complex structures consisting of several structural parts, there are many sources of
dissipation of vibration energy (damping) (see reference [1]). Probably, the most commonly
known is material damping in anelastic materials. Another important source of damping in
structures is the dissipation of vibration energy at interfaces (or joints) between structural
parts, due to, for example, friction and air pumping [1]. Knowledge of the damping, both in
the material and at interfaces between structural parts, is very important in built-up
structures in order to predict the vibration "eld accurately. The estimation/modelling of
damping at joints is an area that requires extensive research due to the small number of
publication's available today. In order to describe the damping behaviour of the joints, it
may be important to know the detailed dynamic traction vector acting on contact surfaces
(or interfaces) between structural parts.

A hybrid technique for obtaining the detailed frequency and spatial dependent traction
vector is proposed here. The method is an extension and application of the results reported
by Sehlstedt [2], where a technique for obtaining dynamic strain tensor "elds was
presented. This technique, called hybrid strain analysis (HSA), is based on input from
hybrid modal analysis (HMA). Hybrid modal analysis [3], is a method of obtaining the
three-dimensional displacement "eld in a vibrating structure from a restricted set of
measured vibration displacement response data combined with a set of elastic eigenmodes.
0022-460X/02/050921#17 $35.00/0 ( 2002 Academic Press



922 N. SEHLSTEDT
Based on the terminology used in the earlier methods, it is natural to denote the proposed
method as hybrid traction analysis (HTA). Hybrid traction analysis should be interpreted as
HSA applied to a built-up structure with unknown dynamic properties at the interfaces
between the structural parts. The traction vector is then obtained at both the contact
interfaces between di!erent structural parts and within the structural parts. In the present
application, it is assumed that the elastic and anelastic properties in the structural parts are
known.

Normally, the traction vector is associated with the boundary surface traction vector, i.e.,
the traction vector acting on the boundary surface of the structure. It is important to note
that the surface discussed here, in general, can be an internal one.

The problem of calculating the dynamic traction vector excitation acting on the
boundary of a structure from measured vibration responses is usually referred to as the
inverse problem. In several applications, when solving the inverse problem, it is often
reported, (see for example references [4}10]) that the problem equations become
ill-conditioned. In Sehlstedt [11], a well-conditioned technique for obtaining the spatial and
frequency-dependent boundary traction vector is proposed. However, when using the
method proposed here for obtaining the boundary traction vector, for example, at interfaces
between structural parts, there is no problem with ill-conditioning; moreover, the dynamic
stress tensor and needed traction vectors are obtained, not just on the boundary but, in the
whole structure. In fact, the dynamic strain tensor is available at arbitrary points in the
structure by means of HSA, and then the stress tensor and thus also the traction vector can
be obtained at the same points from known material properties (both elastic and anelastic)
of the structure in question.

Throughout the text the three-dimensional displacement "eld in the time domain is
denoted by u (x, t)3R3, and its frequency domain, Laplace transformed, counterpart is
denoted with a tilde above the function, i.e., u8 (x, s)3C3. Here, and in the following,
s"a#iu is a complex frequency variable where i (i2"!1) denotes the imaginary unit
and u is the circular frequency (rad/s) of vibration; also, Hilbert space basis functions and
elastic (normal) displacement (eigen) modes are used synonymously.

It is assumed here that any quasi-static contributions are neglected, i.e., the proposed
method is only valid at frequencies higher than zero.

2. GOVERNING EQUATIONS

Consider a three-dimensional solid occupying a volume XLR3. The motion of
a vibrating body may be described by a time-dependent three-dimensional displacement
"eld u"u(x, t) where x is a point in the body, and t is the time variable. If vanishing body
forces are assumed, the time domain, matrix representation of (Cauchy's "rst) equations of
motion are given by

!DT[r]#ouK"0, (1)

where r"r (x, t) is the Voight-matrix representation of the symmetric Cauchy stress tensor,
and D is a partial di!erential operator de"ned in Appendix A; the mass density distribution
o"o(x) is assumed to be time invariant.

The Laplace transformed, frequency domain (s-domain) counterpart to equation (1) can
be stated as

!DT[rJ ]#s2ou8 "0, (2)
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where rJ "rJ (x, s) and u8 "u8 (x, s) are the frequency domain stress and displacement "elds
respectively.

Following Dovstam [3], the stress}strain relationship for a linear non-hereditary
material at isothermal conditions may be described by

rJ "H< e8 "H< D[u8 ], (3)

where H< "H< (x, s) is a complex, position- and frequency-dependent, constitutive 6]6
material matrix; and e8 "e8 (x, s) is the frequency domain strain "eld. Further, it is assumed
that HK can be decomposed as

H< "H#HD , (4)

where H and HD denote the zero frequency, relaxed elastic properties, and the
frequency-dependent anelastic properties respectively. Methods for estimating, HD, for
a speci"c isotropic material are described in Dovstam and Dalenbring [12] and Dalenbring
[13].

The spatial and time-dependent Cauchy traction vector is de"ned as [14]

t
n
(x, t) :"Nr, (5)

where the subscript n denotes the normal to the surface with Cartesian matrix
representation N as de"ned in Appendix A. The Laplace transformed counterpart to
equation (5) is de"ned as

t3
n
(x, s) :"Nr8 "NH< e8 . (6)

3. HYBRID RESPONSE MODEL

In this section the basic concepts of the hybrid response model used here, on which HMA
and HSA are also based, will be brie#y outlined. The term hybrid should be interpreted here
as a mixture of measurements and continuous mode series expansion. For details of HMA
and HSA see Dovstam [3] and Sehlstedt [2] respectively.

Here some important facts regarding Fourier series in Hilbert spaces will be emphasized
when applied to three-dimensional functions and domains. In Appendix B, these facts will
be discussed further.

Fourier series play an important role in the above-mentioned methods. The frequency
domain Laplace transformed three-dimensional displacement "eld, u8 "u8 (x, s), may be
represented by a generalized spatial Fourier series (or mode series expansion)

u8 (x, s)"
=
+

m/1

c
m
(u8 )w(m) (x), (7)

where the s-dependent, i.e., frequency-dependent, coe$cients c
m
(u8 ) are linear functionals of

the Laplace transformed displacement "eld, u8 , de"ned in Appendix A; and the
three-dimensional vector "eld w(m)3R3, with real valued components, is the eigenmode
number m with corresponding circular eigenfrequency u

m
satisfying a certain elastic

eigenvalue problem (see Appendix B). The sequence Mw(m)N=
m/1

is referred to as a spatial
Hilbert space basis, and it is thus complete. This will yield an L3

2
(X)-convergent series, i.e.,

convergent in the mean square sense (see Appendix B). The eigenmodes, w(m), are assumed
here to be dimensionless, and hence, the Fourier coe$cients, c

m
(u8 ), have the dimensions of

length (m) if the modal masses, a
m

de"ned in Appendix A, have dimensions of weight (kg).
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The HMA technique for obtaining the three-dimensional displacement "eld is essentially
a method for estimating the Fourier coe$cients, c

m
(u8 ). By means of measured vibration

responses (displacement, or velocity/acceleration transformed into displacement) and
numerical approximations (e.g. using the "nite element method (FEM)) to the eigenmodes,
w(m), the Fourier coe$cients, c

m
(u8 ), are obtained by a least-squares "t. Based on a truncated

version of equation (7), least-squares estimates for the Fourier coe$cients can be obtained
as outlined below.

Assume that up to M number of modes are to be used in the truncated version of the
in"nite mode series expansion (7). Then, for the measured displacement response, ;I mea

i
, at

a point p(i) with co-ordinate x
p(i)

and measurement direction n;
i
(n;

i
being a three-dimensional

vector of unit length), the following relationship is obtained:

U3 mea"AC3 #U3 res, (8)

where A is a real and constant N]M response matrix (N being the number of measured
responses), with components de"ned as A

im
:"n;

i
)w(m) (x

p(i)
), relating the Fourier

coe$cients, arranged in the vector C3 , to the displacements; the vector C3 is de"ned such that

CI :"[c
1
(u8 ), c

2
(u8 ),2, c

M
(u8 )]T. (9)

Note that at each point p (i) there can be up to three responses, ;I mea
i

, i.e., if measurements
are performed in more than one direction at p(i); this means that p(i)"p(j), for iOj is
possible. Thus, the set of measurement points is p3M1,2,PN, such that P)N.

Finally, U3 res in equation (8) is the residual caused by truncation of the in"nite series as in
equation (7). Approximation of the residual and the consequence of neglecting the residual
were discussed in Dovstam [3] and Sehlstedt [2].

If the residual is neglected a higher number of modes have to be used, M, in the truncated
version of the mode series expansion (7); this implies a higher number of measurements, N,
in order to resolve the eigenmode with shortest wavelength used in the (mode) series
expansion (7).

Now least-squares estimates of the Fourier coe$cients, c
m
(u8 ), can be obtained by means

of equation (8), i.e., C3 can be estimated as

C3 "A` (U3 mea!U3 res), (10)

where A` is the pseudo-inverse of A.
Knowing the coe$cients, c

m
(u8 ), m3M1,2,MN, displacement response can be predicted at

arbitrary points in the vibrating structure by means of the eigenmode "elds w(m)"w(m)(x),
m3M1,2, MN, the series expansion, and possibly some approximation to the residual U3 res.
Then by means of numerical di!erentiation, the dynamic strain tensor "eld is obtained
using the predicted displacement "eld and the de"nition of the strain tensor (A6).

Of course, N*M and it should be stressed that the measurements must be carried out so
that they can resolve the shortest wavelength of the eigenmodes, w(m), used which is
in#uenced by the characteristics of the vibration "eld, u8 .

4. DYNAMIC TRACTION VECTOR ESTIMATION

In a complex structure consisting of several structural parts with interfaces (or joints)
between the parts, there is often no knowledge of the dynamic properties of the interface, i.e.,
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no physical model exists describing the dissipation of vibration energy (damping) at the
interface. As mentioned in section 1, this damping behaviour is due to, for example, friction
and air pumping.

Accurate knowledge of the traction vector "eld is a good starting point for deriving
physical models describing this kind of damping. One of the objectives for the proposed
method is the accurate description of the frequency and spatial-dependent traction vector
acting on the interfaces between structural parts.

Now by applying the hybrid strain response model from section 3, the dynamic strain
tensor ,eld for the (whole) body X can be predicted. Then the dynamic traction vector ,eld
can be obtained by means of the de"nition; that is, equation (6) and known elastic and
anelastic properties, (equations (3) and (4)), of the structure in question. This is
a straightforward task; but there are some aspects regarding the eigenmodes when using the
HTA method proposed below that need to be addressed.

The lack of knowledge about the dynamic properties of the interfaces is, in the proposed
method, overcome by assuming some ,ctitious but appropriate geometrical extension,
elastic properties and mass distribution for the interfaces and including them and the
structural parts in a volume, X

w
, such that X

w
:"XXX

fict
, where X

fict
denotes the volume of

the "ctitious part consisting of the "ctitious geometrical extension of the interfaces. Note
that the contact area can always be assumed to be known, and hence the "ctitious extension
will only be in one direction. Then by solving the elastic eigenvalue problem, as in equations
(B.1) and (B.2) (with X

w
as the body), elastic eigenmodes describing some &&movement''

between structural parts at the interfaces can be obtained. In practice (and in theory),
one will "nd di!erent properties in X and in the "ctitious part X

fict
. However, the

&&true'' properties of the "ctitious part, X
fict

, need not be known. The only requirement for
the eigenmodes obtained is to span the Hilbert space L3

2
(X

w
) and approximate the

displacement "eld, u8 , in the body X accurately enough, with as low a number of eigenmodes
as possible.

The question is what kind of geometrical extension, elastic properties and mass
distribution should be assumed for the "ctitious part, X

fict
. There is no unique answer to

this question; but in practice, the choice is guided by minimizing the error between predicted
displacement responses and separately measured displacement spectra not used in the
estimation of the Fourier coe$cient spectra. It must be kept in mind that only a limited
number of eigenmodes is needed, which is computationally inexpensive to obtain.
Therefore, even if the eigenvalue problem needs to be solved several times, in order to obtain
the best choice for the properties in the "ctitious part, X

fict
, it will not make the proposed

method computationally demanding. Also, it must be kept in mind that the proposed
method is intended as a tool for the estimation/modelling of damping at interfaces between
structural parts, and hence the issue of computer time is not the most important.

The proposed technique, HTA, can be summarized as follows:

(1) Measure N number of vibration responses at a number of points on the structure. The
number N should be chosen to be large enough compared with the number of needed
modes, M, so that the system of equations, as in equation (8), is su$ciently over-determined,
and such that the shortest wavelength of the eigenmodes, w(m), used in the series expansion
can be resolved, which is in#uenced by the wavelengths of the vibration "eld, u8 . Note that at
some of the measurement points, measurements in all three Cartesian directions are needed
in order to resolve the motion;

(2) Assume some initial values for the geometrical extension, elastic properties and mass
distribution for the "ctitious part, X

fict
, and solve the elastic eigenvalue problem for the

whole structure, X
w
, i.e., as in equations (B.1) and (B.2), with a detailed geometrical
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description, i.e., a su$ciently high number of "nite elements if the generation of the
w(m)-basis is based on the FEM;

(3) Residual approximation, if the excitation is known. If the number of modes, M, is high
enough the residual can be neglected. Note that the residual approximation can actually
worsen the results. An indication of this will be noticed when validating the coe$cient
spectra, as in item 5;

(4) Fourier coe$cient spectra estimation, using equation (10);
(5) Validation of coe$cient spectra using the truncated version of equations (7), and

measured validation spectra not used in the estimation of the Fourier coe$cient spectra, as
in item 4;

(6) Assume new values for the properties for the "ctitious part, X
fict

, and carry out 2}5
until the convergence criterion is ful"lled, i.e., the error between the predicted and
separately measured validation spectra is minimized;

(7) Displacement response prediction at 3n#1 points, i.e., the point of interest and
n adjacent points in each (Cartesian) co-ordinate direction, using the truncated version of
equation (7);

(8) Strain tensor calculation using "nite di!erence schemes of order n and equation (A.6).
It is assumed that the numerical di!erentiation is performed by n#1 point "nite di!erence
schemes (see reference [2]);

(9) Traction vector estimation using the calculated strain tensor and equation (6).

It is important to emphasize that the geometrical extension, elastic properties and mass
distribution of the "ctitious part, X

fict
, only have to be chosen so as to yield a low error

between separately measured validation spectra and their corresponding simulations based
on equation (7). Note that the true material properties have to be known for the body, X,
under study.

Note also that, by means of the method proposed above, the dynamic stress tensor, and
thus also the traction vector, is obtained (within the actual limits of displacement
wavelengths and maximum frequency of vibration) at any point in the structure, not just at
the interface between the structural parts.

5. NUMERICAL TEST CASE

The method proposed in section 4 will be validated numerically in this section by means
of the FEM, i.e., the necessary measured responses are simulated using FEM. The test
structure is the same as in [11], i.e., an aluminium plate having dimensions
0)520]0)300]0)0042m (x]y]z). The plate is attached to two supports consisting of
Plexiglas (PMMA) and having dimensions 0)01]0)300]0)01 m (x]y]z), as depicted in
Figure 1. The two supports are modelled as attached to the plate along one edge (z"0)0m)
Figure 1. The test structure.
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and "xed to the ground along the other edge (z"!0)01m). The supports simulate some
true interfaces between the plate and the ground. The objective is to calculate the traction
vector "eld at the interfaces using only the information of the contact area as a prior
knowledge for the supports.

The elastic material properties for the aluminium plate are o
Al
"2795 kg/m3 for the mass

density distribution, and zero frequency Young's modulus and the Poisson ratio
E
Al
"73)0 GPa and l

Al
"0)3260, respectively; and for the Plexiglas supports

o
PMMA

"1181 kg/m3, E
PMMA

"3)44 GPa and l
PMMA

"0)3820. The anelastic properties of
the Plexiglas are neglected for simplicity; note that this is no restriction for the proposed
method.
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Figure 3. Final validation of independent displacement response in the x direction:**, direct FE-calculated;
- - -, simulated.
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Figure 2. Initial simulation of independent displacement response in the x direction:**, direct FE-calculated;
- - -, simulated.
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Numerical simulation of measured responses (U3 mea in equation (8)) is obtained by direct
"nite element (FE) calculations in MSC NastranTM resulting in a discrete "nite dimensional
response model [3], with a total number of 94 &&measurement'' points with displacement, in
all three (Cartesian) directions. The residual, U3 res, in equation (8) is neglected completely.

The FE mesh for the plate consists of 18 720 (solid) elements, with eight grid points in
each element. The total number of grid points is 25 620, with four grid points, i.e., three
elements, through the thickness. For the Plexiglas supports these numbers are: 1440
solid elements with a total of 2562 grid points. This gives a grand total of 27 816 grid points
and 20 160 elements for the complete structure (the plate and supports). The plate is
excited by a traction vector, t3

n
"[1, 9, 9]T Pa, acting at a point with location

x
e
"[0)2600, 0)1600, 0)0042]T m.
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Figure 5. Fourier coe$cient for m"8, i.e., c
8
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Following the discussion in section 4 about "ctitious geometrical extension and material
properties for the interfaces, that is, in this case the supports, some initial values are
assumed. The elastic eigenvalue problem is then solved by means of MSC NastranTM for the
structure including the plate and the "ctitious extension, i.e., X

w
"XXX

fict
. As a "rst guess

the elastic eigenvalue problem is solved using the assumption that X
w

consists of
aluminium, and has geometrical extension in the negative z direction of 0)005 m for both
"ctitious extensions. The dimensions in the x and y directions are of course known since the
contact surface can always assumed to be known. Then validation, by equation (10), of the
calculated Fourier coe$cients with independently FE-calculated displacement spectra is
performed. One example of this validation can be seen in Figure 2. A total number of 100
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Figure 7. HTA calculated traction vector compared with the true traction vector, in the y direction, at
x"[0)01, 0)005, 0)00]T: **, true; - - -, HTA calculated.
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Figure 6. HTA calculated traction vector compared with the true traction vector, in the x direction, at
x"[0)01, 0)005, 0)00]T: **, true; - - -, HTA calculated.
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modes are used in the mode series expansion, i.e., 100 Fourier coe$cients were calculated
using equation (10). As can be seen in Figure 2, the predicted displacement is slightly lower
than the true one; therefore, one can conclude that the sti!nesses in the "ctitious extensions,
X

fict
, are a little too high. A second eigenmode calculation using E

support
"5 GPa for the

"ctitious extensions, but otherwise the same material properties as for aluminium and the
same geometrical extension as before, gave a very good simulation of the displacement in
the aluminium plate as can be seen in Figure 3. Here, as before, 100 modes were calculated.

It cannot be overemphasized that the only role for the eigenmodes is to span L3
2
(X

w
) and

approximate the displacement "eld su$ciently accurately using the lowest possible number
of eigenmodes. Here L3

2
(X

w
) is the space of square integrable, three-dimensional continuous

functions in X
w
.
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Figure 9. HTA calculated traction vector compared with the true traction vector, in the x direction, at
x"[0)51, 0)26, 0)00]T: **, true; - - -, HTA calculated.
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Figure 8. HTA calculated traction vector compared with the true traction vector, in the z direction, at
x"[0)01, 0)005, 0)00]T: **, true; - - -, HTA calculated.
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In Figures 4 and 5, the estimated Fourier coe$cients for modes number 1 and 8, i.e., c
1
(u8 )

and c
8
(u8 ) are depicted. It can be seen that each Fourier coe$cient has more than one peak.

This is due to the fact that the Fourier coe$cients are coupled to each other, i.e., c
m
(u8 ) and

c
r
(u8 ), mOr, depend on each other. Here the coupling is due to the fact that the eigenmodes

that span L3
2
(X

w
) are used to simulate response in a body which is di!erent from X

w
.

The traction vector calculated by means of HTA is compared with the true traction
vector. The true traction vector is obtained using de"nition (6) and direct FE computed
displacements. The spatial derivatives in equation (6) are calculated using numerical
di!erentiation, in three point non-equidistant "nite di!erence schemes (see reference [2]).
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Figure 11. HTA calculated traction vector compared with the true traction vector, in the z direction, at
x"[0)51, 0)26, 0)00]T: **, true; - - -, HTA calculated.
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x"[0)51, 0)26, 0)00]T: **, true; - - -, HTA calculated.
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Also in HTA three point non-equidistant "nite di!erence schemes are used. This
comparison can be seen in Figures 6}11 for two di!erent points at the interfaces between the
plate and the supports. Apart from a few exceptions the agreement is very good.

Note that the stress tensor can be estimated in all 25 620 grid points in the FE-model of
the plate, making a total of 25 620]6"153 720 stress tensor components using only
94]3"282 displacement components in the proposed method. Thereafter, the traction
vector can be obtained at the desired surface for each of the 25 620 grid points.

The norm for a three-dimensional vector "eld on the boundary, E ) EL3
2
(LX) , as de"ned in

Appendix A, is calculated for the HTA-calculated and true traction vector and the results
are depicted in Figure 12, where it can be seen that the agreement is good.

6. SUMMARY AND DISCUSSION

In this paper, a method denoted as hybrid traction analysis (HTA), for the estimation of
the dynamic traction vector is proposed. The method is based on hybrid strain analysis
where a restricted number of measured vibration responses and approximations to a spatial
Hilbert space basis combined with numerical di!erentiation yield the dynamic strain tensor
"eld. Hybrid traction analysis is an extension and special application of hybrid strain
analysis to the case of a built-up structure with unknown dynamic properties in the
interfaces between the structural parts. The dynamic stress tensor and thus also the traction
vector is obtained not just at the interfaces but in the whole structure in question, since the
elastic and anelastic material properties of the structure is assumed to be known.

It is emphasized that the displacement measurements must be carried out in all three
Cartesian directions, e.g., by means of triaxial accelerometers, at least for a subset of the set
of measurement points.

Together with the method presented in reference [11] the method proposed here may be
used as a tool for calculating the dynamic boundary traction vector acting on, for example,
interfaces between structural parts. This is a good starting point for deriving physical
models describing damping at joints and interfaces between di!erent parts.
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APPENDIX A: DEFINITIONS

The displacement "eld, u, the Voight-matrix representation of the symmetric stress tensor
"eld, r, and strain tensor "eld, e, in Cartesian co-ordinates are de"ned as

u :"u(x, t)"[u
1

u
2

u
3
]T, (A.1)

r :"r (x, t)"[p
11

p
22

p
33

p
12

p
23

p
31

]T (A.2)

e :"e (x, t )"[e
11

e
22

e
33

2e
12

2e
23

2e
31

]T, (A.3)

where x"[x
1
,x

2
,x

3
]T and t is the time variable.
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The linear strain}displacement "eld relations are given as

e
ik
"

1

2 C
Lu

i
Lx

k

#

Lu
k

Lx
i
D. (A.4)

Thus the "rst order (strain), partial di!erential operator matrix can be de"ned as

D :"

L
Lx

1

0 0

0
L

Lx
2

0

0 0
L

Lx
3

L
Lx

2

L
Lx

1

0

0
L

Lx
3

L
Lx

2
L

Lx
3

0
L

Lx
1

, (A.5)

so that the strain "eld can be expressed as

e"D[u]. (A.6)

The Cartesian matrix representation, N"N(x), of the unit normal vector "eld,
n(x)"[n

1
, n

2
, n

3
]T, is de"ned as

N :"

n
1

0 0 n
2

0 n
3

0 n
2

0 n
1

n
3

0

0 0 n
3

0 n
2

n
1

. (A.7)

The L3
2
(X)"L

2
(X)]L

2
(X)]L

2
(X) inner product (u, v) on the domain XLR3 is de"ned

as (see reference [15])

(u, v) :"PX

u ) v* dX"PX

(u
1
v*
1
#u

2
v*
2
#u

3
v*
3
) dX, (A.8)

where u and v are some continuous functions, and vH denotes the complex conjugate of the
three-dimensional vector "eld v. The inner product for vector "elds on the boundary, LX, is
de"ned as

(u, v)LX :"PLX

u ) v* dLX. (A.9)

The natural norm in L3
2
(X) is then de"ned as

EuEL3
2
(X) :"J(u, u)"SPX

Du D2dX. (A.10)
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The L3
2
(LX) norm for u3C3 on the boundary LX is de"ned as

EuEL3
2
(LX) :"J(u, u)LX"SPLX

Du D2dLX. (A.11)

The Fourier coe$cients for the series expansion of the displacement "eld are de"ned as

c
m
(u8 ) :"

(u8 , ow(.))

a
m

, (A.12)

a
m
:"(w(m),ow(m))'0, (A.13)

where a
m

are the modal masses.
For two six-dimensional vector "elds, E and V, the L6

2
(X) inner product is denoted as

SE,VT and de"ned analogous to the above.
The l

2
-norm for an n-dimensional, real or complex, vector y"[y

1
, y

2
,2, y

n
] is de"ned as

DyD :"S
n
+
i/1

Dy
i
D2. (A.14)

when y is a real vector, the above norm is the well-known Euclidean norm.
The isotropic, elastic generalized Hooke's law relating the elastic stress vector with the

strain vector can be expressed as

H"j )Hj#G )H
G
, (A.15)

where j"2l )G/(1!2l), G"E/(2(1#l)), (Hj)ik"1 for i, k)3, and (H
G
)
ii
"2 for i)3

and (H
G
)
ii
"1 for 4)i)6.

APPENDIX B: FOURIER SERIES IN THE HILBERT SPACE L3
2
(X)

Let X be a compact (i.e., closed and bounded) set as de"ned in section 2, such that
XLR3; also, let L3

2
(X) be a Hilbert space with metric d (u, v) :"Eu!vEL3

2
(X) , where E ) EL3

2
(X)

is the L3
2
(X)-norm de"ned in Appendix A, and u and v are some continuous

(three-dimensional) functions. Note that L3
2
(X) :"L

2
(X)]L

2
(X)]L

2
(X), where L

2
(X) is the

usual Hilbert space of square integrable scalar (complex) valued functions, i.e., L3
2
(X) is the

space of square integrable three-dimensional vector valued functions. Recall that a Hilbert
space is a complete inner product space, and an inner product space is a vector space with
an inner product. Completeness means that every Cauchy sequence converges. Here the
inner product is denoted by () , )) and de"ned in Appendix A.

Let the three-dimensional real valued vector "eld w(m)"[w(m)
1

,w(m)
2

, w(m)
3

]T3R3 be the
mode shape number m with corresponding circular eigenfrequency u

m
, i.e., w(m) is assumed

to be the eigenpair to an elastic eigenvalue problem with equations of motion

!DTHD[w(m)]"u2
m
ow(m) (B.1)

and homogeneous Neumann and Dirichlet boundary conditions ful"lling

(NHD[w(m)],w(r))LX"0 ∀m, r. (B.2)



936 N. SEHLSTEDT
Then it is guaranteed that the continuous (real) modes of vibration, Mw(m)N=
m/1

, constitute
a set of complete basis functions in the Hilbert space L3

2
(X), (see Gurtin [16]), where it was

proved for a material continuous body). It is assumed here to be also valid for a material
discontinuous body. In addition to completeness, the modes are orthogonal

(w(m),ow(r))"a
m
d
mr

∀m, r, (B.3)

where d
mr

is the Kronecker delta, and a
m

are the modal masses as de"ned in Appendix A.
Now, due to the completeness, it can be shown (see Reference [17]) that

lim
M?=

KK
M
+

m/1

c
m
(u8 )w(m)!u8 KKL3

2
(X)

"0, (B.4)

where c
m
(u8 ), m3[1,R], are the Fourier coe$cients as de"ned in Appendix A and obtained

using the concepts of HMA, as summarized in section 3. Further, the best approximation
theorem (reference [17]), states that the Fourier coe$cients as de"ned in Appendix A are
the coe$cients that provide the best approximation.

APPENDIX C: NOMENCLATURE

A modal response matrix
a
m

modal mass number m
C3 three-dimensional complex space
CI vector of estimated Fourier coe$cients
c
m
(u8 ) Fourier coe$cient number m

D strain operator matrix
E Young's modulus
HK complex, position and frequency-dependent material matrix
H elastic generalized Hooke's matrix
HD position and frequency-dependent anelastic material properties
L
2
(X) Hilbert space of square integrable functions

L3
2
(X) Hilbert space of square integrable three-dimensional vector valued functions

G shear modulus
M number of modes used in series expansion of the displacement "eld
N matrix representation of the unit normal vector
N number of measurements
n;
i

unit vector of the measurement direction for response number i
P number of measurement points
p(i) point number i
R3 three-dimensional Euclidean space
s Laplace variable
t
n
(x, t) traction vector in time domain

t8
n
(x, s) traction vector in frequency domain

t time
u(x, t) three-dimensional displacement "eld in time domain
u8 (x, s) three-dimensional displacement "eld in frequency domain
U3 mea measured frequency domain vibration response vector
U3 res frequency domain residual vector
;I mea

i
measured frequency domain vibration response number i

w(m) (x) three-dimensional basis function "eld number m
x co-ordinate vector
e (x, t) Voight-matrix representation of the strain tensor in the time domain
eJ (x, s) Voight-matrix representation of the strain tensor in the frequency domain
j LameH s constant
l The Poisson ratio
o density
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r (x, t) Voight-matrix representation of the Cauchy stress tensor, in the time domain
rJ (x, s) Voight-matrix representation of the Cauchy stress tensor, in the frequency domain
X volume of the body
X

fict
volume of "ctitious geometrical extension

X
w

volume of the body and "ctitious geometrical extension
LX boundary surface of the body
u circular frequency
u

m
circular eigenfrequency number m
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